首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1370篇
  免费   133篇
  2021年   12篇
  2020年   15篇
  2019年   21篇
  2018年   14篇
  2017年   18篇
  2016年   18篇
  2015年   40篇
  2014年   56篇
  2013年   51篇
  2012年   68篇
  2011年   47篇
  2010年   53篇
  2009年   44篇
  2008年   61篇
  2007年   69篇
  2006年   60篇
  2005年   56篇
  2004年   41篇
  2003年   46篇
  2002年   30篇
  2001年   51篇
  2000年   28篇
  1999年   39篇
  1998年   31篇
  1997年   17篇
  1996年   14篇
  1995年   16篇
  1994年   12篇
  1993年   9篇
  1992年   25篇
  1991年   26篇
  1990年   18篇
  1989年   18篇
  1988年   24篇
  1987年   16篇
  1986年   32篇
  1985年   16篇
  1984年   13篇
  1983年   8篇
  1982年   11篇
  1980年   10篇
  1979年   28篇
  1978年   12篇
  1977年   13篇
  1976年   12篇
  1975年   16篇
  1974年   11篇
  1973年   14篇
  1972年   9篇
  1881年   8篇
排序方式: 共有1503条查询结果,搜索用时 406 毫秒
51.
Gold salts and phenylbutazone selectively inhibit the synthesis of PGF and PGE2 respectively. Lowered production of one prostaglandin species is accompanied by an increased production of the other. Selective inhibition by these drugs was observed in the presence of adrenaline, reduced glutathione and copper sulphate under conditions when most anti-inflammatory compounds inhibited PGE2 and PGF syntheses equally. It is postulated that selective inhibitors may have a different mode of action and beneficial effects may be related to the endogenous ratio of PGE to PGF required for normal function.  相似文献   
52.
Changes in rainfall amounts and patterns have been observed and are expected to continue in the near future with potentially significant ecological and societal consequences. Modelling vegetation responses to changes in rainfall is thus crucial to project water and carbon cycles in the future. In this study, we present the results of a new model‐data intercomparison project, where we tested the ability of 10 terrestrial biosphere models to reproduce the observed sensitivity of ecosystem productivity to rainfall changes at 10 sites across the globe, in nine of which, rainfall exclusion and/or irrigation experiments had been performed. The key results are as follows: (a) Inter‐model variation is generally large and model agreement varies with timescales. In severely water‐limited sites, models only agree on the interannual variability of evapotranspiration and to a smaller extent on gross primary productivity. In more mesic sites, model agreement for both water and carbon fluxes is typically higher on fine (daily–monthly) timescales and reduces on longer (seasonal–annual) scales. (b) Models on average overestimate the relationship between ecosystem productivity and mean rainfall amounts across sites (in space) and have a low capacity in reproducing the temporal (interannual) sensitivity of vegetation productivity to annual rainfall at a given site, even though observation uncertainty is comparable to inter‐model variability. (c) Most models reproduced the sign of the observed patterns in productivity changes in rainfall manipulation experiments but had a low capacity in reproducing the observed magnitude of productivity changes. Models better reproduced the observed productivity responses due to rainfall exclusion than addition. (d) All models attribute ecosystem productivity changes to the intensity of vegetation stress and peak leaf area, whereas the impact of the change in growing season length is negligible. The relative contribution of the peak leaf area and vegetation stress intensity was highly variable among models.  相似文献   
53.
54.
55.
56.
Overwintering is a challenging period in the life of temperate insects. A limited energy budget characteristic of this period can result in reduced investment in immune system. Here, we investigated selected physiological and immunological parameters in laboratory‐reared and field‐collected harlequin ladybirds (Harmonia axyridis). For laboratory‐reared beetles, we focused on the effects of winter temperature regime (cold, average, or warm winter) on total haemocyte concentration aiming to investigate potential effects of ongoing climate change on immune system in overwintering insects. We recorded strong reduction in haemocyte concentration during winter; however, there were only limited effects of winter temperature regime on changes in haemocyte concentration in the course of overwintering. For field‐collected beetles, we measured additional parameters, specifically: total protein concentration, antimicrobial activity against Escherichia coli, and haemocyte concentration before and after overwintering. The field experiment did not investigate effects of winter temperature, but focused on changes in inducibility of insect immune system during overwintering, that is, measured parameters were compared between naïve beetles and those challenged by Escherichia coli. Haemocyte concentration decreased during overwintering, but only in individuals challenged by Escherichia coli. Prior to overwintering, the challenged beetles had a significantly higher haemocyte concentration compared to naïve beetles, whereas no difference was observed after overwintering. A similar pattern was observed also for antimicrobial activity against Escherichia coli as challenged beetles outperformed naïve beetles before overwintering, but not after winter. In both sexes, total protein concentration increased in the course of overwintering, but females had a significantly higher total protein concentration in their hemolymph compared to males. In general, our results revealed that insect’s ability to respond to an immune challenge is significantly reduced in the course of overwintering.  相似文献   
57.
Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short‐term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil‐borne microbial community. Long‐term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by 13C pulse‐chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA‐stable isotope probing (RNA‐SIP), in combination with real‐time PCR and PCR‐DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the 13C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes.  相似文献   
58.
59.

Background

The common or brinjal eggplant (Solanum melongena L.) belongs to the Leptostemonum Clade (the “spiny” solanums) of the species-rich genus Solanum (Solanaceae). Unlike most of the genus, the eggplant and its relatives are from the Old World; most eggplant wild relatives are from Africa. An informal system for naming eggplant wild relatives largely based on crossing and other biosystematics data has been in use for approximately a decade. This system recognises several forms of two broadly conceived species, S. incanum L. and S. melongena. Recent morphological and molecular work has shown that species-level differences exist between these entities, and a new species-level nomenclature has been identified as necessary for plant breeders and for the maintenance of accurately named germplasm.

Methodology/Principal Findings

We examined herbarium specimens from throughout the wild species ranges as part of a larger revision of the spiny solanums of Africa. Based on these morphological and molecular studies, we delimited species in the group to which the common eggplant belongs and constructed identification keys for the group. We also examined the monophyly of the group considered as the eggplant relatives by previous authors.

Conclusions/Significance

We recognise ten species in this group: S. aureitomentosum Bitter, S. campylacanthum A.Rich., S. cerasiferum Dunal, S. incanum L., S. insanum L., S. lichtensteinii Willd., S. linnaeanum Hepper & P.-M.L.Jaeger, S. melongena L., S. rigidum Lam. and S. umtuma Voronts. & S.Knapp. We review the history of naming and provide keys and character lists for all species. Ploidy level differences have not been investigated in the eggplant wild relatives; we identify this as a priority for improvement of crop wild relative use in breeding. The application of species-level names to these entities will help focus new collecting efforts for brinjal eggplant improvement and help facilitate information exchange.  相似文献   
60.
About half of the world's oil production is from carbonate formations. However, most of the research in microbially enhanced oil recovery (MEOR), a potentially important tertiary recovery technology, has focused on sandstone reservoirs because, in general, they are geologically simpler than carbonate reservoirs and easier to model in the laboratory. Carbonate formations have a wide range of pore geometries and distributions, resulting in complex flow dynamics. The low matrix permeabilities and the dual porosity characteristics of most carbonate formations, coupled with the chemistry of carbonates, have slowed implementation of enhanced oil recovery methods. A review of the data on carbonate reservoirs in Dwight's Energydata TOTL System indicated that 40% of the oil‐producing carbonate reservoirs surveyed in the United States have environmental, geological, and petrophysical conditions that would make them candidates for MEOR. A review of a number of MEOR field trials showed that rates of oil production could be increased by as much as 200%. Microbial activity in these trials was probably due to that of indigenous populations rather than the microorganisms injected for the trials. Detrimental effects such as loss of injectivity and increased souring were not reported. Based on analysis of the geology and petrophysical characteristics of carbonates, two common mechanisms of MEOR, microbial acid production and microbial gas production, are especially suited for application in carbonate reservoirs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号